原式=[1/(1×3)+1/(3×5)+......+1/(98×100)]+[1/(2×4)+1/(4×6)+......+1/(99×101)]=(1-1/3+1/3-1/5+1/5-1/7+......+1/98-1/100)+(1/2-1/4+1/4-1/6+......+1/99-1/101)=1-1/100+1/2-1/101=3/2-1/100-1/101
1/(n^2-1)=1/2[(1/n-1)-(1/n+1)]将n=2至n=100带入