一道定积分题,高手帮忙,谢谢了

∫(0,1)√(2x-x^2)dx
2025-04-18 09:01:42
推荐回答(2个)
回答1:

∫√(2x-x^2)dx=∫√(1-(x-1)^2)d(x-1),换元t=x-1,
则∫√(2x-x^2)dx=∫√(1-t^2)dt(这里可以用公式套进去或者令t=sinu继续换元算)
=t/2*√(1-t^2)+1/2*arcsint+C
=1/2*(x-1)*√(2x-x^2)+1/2*arcsin(x-1)+C
然后将上下限(0,1)代入得∫(0,1)√(2x-x^2)dx=π/4

回答2:

解:设1-x=sint,则x=1-sint,dx=-costdt
∴当x=0时,t=π/2
当x=1时,t=0
故 原式=∫(π/2,0)cost(-cost)dt
=∫(0,π/2)cos²tdt
=∫(0,π/2)[(1+cos(2t))/2]dt
=(1/2)[t+sin(2t)/2]|(0,π/2)
=(1/2)(π/2)
=π/4