(1).f(x)=(ax+b)/(1+x^2)是奇函数,(-ax+b)/[1+(-x)^2]=-(ax+b)/(1+x^2),-ax+b=-ax-b,b=0.f(1/2)=2/5,[a*(1/2)]/[1+(1/2)^2]=2/5,a=1.f(x)=x/(1+x^2).(2).设-1因为y-x>0,且xy<1,1-xy>0,所以y(1+x^2)-x(1+y^2)=(y-x)(1-xy)>0,x/(1+x^2)f(x)f(x)在区间(-1,1)内是增函数. 2f(t-1)+f(t)<0 f(t-1)<-f(t)=f(-t) -1 0