如图,在三角形ABC中,AB=AC,角BAC=120度,D是BC的中点,DE垂直于AB,垂足为点E,求证:EB=3EA

2025-04-08 01:26:01
推荐回答(1个)
回答1:

证明:∵AB=AC
∴△ABC为等腰三角形
∵D为BC的中点,∠BAC=120°
∴AD⊥BC,∠EAD=60°
∵在直角△BAD中,∠EAD=60°,∠ABD=30°
∴AD=1/2AB
∵在直角△EAD中,∠EAD=60°,∠ADE=30°
∴EA=1/2AD
∴EA=1/4AB
∴EB=3EA
步骤有点繁琐,是为了让你好理解,自己熟练了可以写简单点。图就不给你画出来了,就是你描述的那样,不用做任何辅助线。