α∈(3π/2,2π),则sinα<0cosα=2/3sinα=-√(1-cos²α)=-√[1-(2/3)²]=-√5/3cos(π/6+α)=cos(π/6)cosα-sin(π/6)sin(α)=(√3/2)(2/3)-(1/2)(-√5/3)=(2√3+√5)/6cos(π/6-α)=cos(π//6)cosα+sin(π/6)sin(α)=(√3/2)(2/3)+(1/2)(-√5/3)=(2√3-√5)/6