直线参数方程t的几何意义怎么推导

2025-04-05 02:29:43
推荐回答(1个)
回答1:

现设直线的倾斜角为k
当你知道直线上其中一个定点s(m,n)
那么沿着直线的正方向出发
走t距离(此时t大于0)到s'(x0,y0)
则有
x0-m=tcosk
y0-n=tsink
整理可以得到
x0=m+tcosk
y0=n+tsink
当s沿着直线的反方向走了t距离(此时t为负的)也一样
也可以得到
x0=m+tcosk
y0=n+tsink
t这里就可以理解为有向线段s到s‘
当然有些时候
出现

x=1+2t
y=1-5t
这时候
2,-5都不在【-1,1】中
这时t就和上面的t的含义不一样了
她就没有啥比较明显的几何意义了
就只是一个参数
要转化成前一种情况的参数t'的话
只要关于
x=x0+at
y=y0+bt
令t换成t/根号(a^2+b^2)就可以完成转换

当然也适用于第一种情况