求助,应用BP神经网络逼近非线性函数

2025-04-17 00:00:43
推荐回答(1个)
回答1:

该作业要求不可使用Matlab自带的神经网络函数,这是因为如果允许使用,则三个函数:newff函数建立网络、train函数训练、sim函数就直接完成作业了。

下面这个附件的第二个案例,就是自己编程,使用BP算法逼近非线性函数y=x1^2+x2^2.该函数为双自变量的非线性函数,完全符合你的作业的要求,可以说你可以直接不用修改,提交该代码作为你的作业。但建议你还是改一下,例如将函数换成其他非线性函数如三角函数等。也可使用改进的如加动量项、自适应学习率、引入陡度因子等方法。


BP(Back Propagation)神经网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hidden layer)和输出层(output layer)。