下边来自编辑学报郝拉娣的《标准差与标准误》,相关性也比较大,希望对大家有帮助。
标准差作为随机误差(或真差) 的代表,是随机误差绝对值的统计均值。在国家计量技术规范中,标准差的正式名称是标准偏差,简称标准差,用符号σ表示。标准差的名称有10 余种,如总体标准差、母体标准差、均方根误差、均方根偏差、均方误差、均方差、单次测量标准差和理论标准差等。标准差的定义式为:用样本标准差s 的值作为总体标准差σ的估计值。样本标准差的计算公式为:。
在抽样试验(或重复的等精度测量) 中, 常用到样本平均数的标准差,亦称样本平均数的标准误或简称标准误( standard error of mean) 。因为样本标准差s 不能直接反映样本平均数
x 与总体平均数μ究竟误差多少, 所以, 平均数的误差实质上是样本平均数与总体平均数之间的相对误。可推出样本平均数的标准误为,其估计值为,它反映了样本平均数的离散程度。标准误越小, 说明样本平均数与总体平均数越接近,否则,表明样本平均数比较离散。
标准差是表示个体间变异大小的指标,反映了整个样本对样本平均数的离散程度,是数据精密度的衡量指标;而标准误反映样本平均数对总体平均数的变异程度,从而反映抽样误差的大小 ,是量度结果精密度的指标。
标准差和标准误都是描述变异的指标,当样本数量一定时,标准差越大,标准误也越大。但是它们所表达的含义是不同的:标准差是描述个体观察值变异程度的大小。标准差越小,均数对一组观察值的代表性越好;标准误是描述样本均数变异程度及抽样误差的大小。标准误越小,用样本均数推断总体的可靠性越大。在应用中,一般来说:标准差与均数结合,用于描述观察值的分布范围,如医学参考值范围的估计;标准误与均数结合,用于估计总体均数可能出现的范围,如参数估计的置信区间。
区别:
①概念不同;标准差是描述观察值(个体值)之间的变异程度;标准误是描述样本均数的抽样误差;
②用途不同;标准差与均数结合估计参考值范围,计算变异系数,计算标准误等。标准误用于估计参数的可信区间,进行假设检验等。
③它们与样本含量的关系不同:当样本含量n足够大时,标准差趋向稳定;而标准误随n的增大而减小,甚至趋于0 。
联系:
标准差,标准误均为变异指标,当样本含量不变时,标准误与标准差成正比。
标准差和标准误都是变异指标,但它们之间有区别,也有联系。区别: ①概念不同;标准差是描述观察值(个体值)之间的变异程度;标准误是描述样本均数的抽样误差;②用途不同;标准差常用于表示变量值对均数波动的大小,与均数结合估计参考值范围,计算变异系数,计算标准误等。标准误常用于表示样本统计量(样本均数,样本率)对总体参数(总体均数,总体率)的波动情况,用于估计参数的可信区间,进行假设检验等。③它们与样本含量的关系不同: 当样本含量 n 足够大时,标准差趋向稳定;而标准误随n的增大而减小,甚至趋于0 。联系: 标准差,标准误均为变异指标,如果把样本均数看作一个变量值,则样本均数的标准误可称为样本均数的标准差;当样本含量不变时,标准误与标准差成正比;两者均可与均数结合运用,但描述的内容各不相同。