解答:已知:△ABC中,AB=AC,D为BC上任意一点,DE⊥AB,DF⊥AC,垂足为E、F,CG⊥AB于G,求证:CG=DE+DF.证明:已知如图所示.∵ED⊥AB,∴S△ABD= 1 2 AB?ED;∵DF⊥AC,∴S△ACD= 1 2 AC?DF;∵CG⊥AB,∴S△ABC= 1 2 AB?CG;又∵AB=AC,S△ABC=S△ABD+S△ACD,∴ 1 2 AB?CG= 1 2 AB?ED+ 1 2 AC?DF,∴CG=DE+DF.