求证:等腰三角形底边上的任意一点到两腰的距离之和等于一腰上的高

2025-04-05 11:07:58
推荐回答(1个)
回答1:

解答:已知:△ABC中,AB=AC,D为BC上任意一点,DE⊥AB,DF⊥AC,垂足为E、F,
CG⊥AB于G,
求证:CG=DE+DF.
证明:已知如图所示.
∵ED⊥AB,
∴S△ABD=

1
2
AB?ED;
∵DF⊥AC,
∴S△ACD=
1
2
AC?DF

∵CG⊥AB,
∴S△ABC=
1
2
AB?CG

又∵AB=AC,S△ABC=S△ABD+S△ACD
1
2
AB?CG
=
1
2
AB?ED+
1
2
AC?DF

∴CG=DE+DF.