已知{a n }是等差数列,公差d>0,前n项和为S n 且满足a 3 ?a 4 =117,a 2 +a 5 =22.对于数列{b n },其

2025-04-10 01:52:40
推荐回答(1个)
回答1:

(1)∵{a n }为等差数列,∴a 3 +a 4 =22…(1分)
由a 3 ?a 4 =117,a 3 +a 4 =22知a 3 ,a 4 是方程x 2 -22x+117=0的两个根
又d>0
∴a 3 =9,a 4 =13                                      …(2分)
∴d=4,a 1 =1
∴a n =1+(n-1)×4=4n-3                            …(3分)
S n =
a 1 + a n
2
=
n(1+4n-3)
2
=n(2n-1)
…(4分)
b n =
n(2n-1)
n+c

∵数列{b n }也是等差数列
∴2b 2 =b 1 +b 3 …(6分)
解得: c=-
1
2
或0(舍)
c=-
1
2
时,b n =2n满足题意.                      …(7分)
(2)∵ f(n)=
b n
(n+36) b n+1
=
2n
(n+36)2(n+1)
=
n
n 2 +37n+36
=
1
n+
36
n
+37
1
2
36
+37
=
1
49

当且仅当 n=
36
n
即n=6时取等号.
∴f(n)的最大值为
1
49
.                             …(14分)