解答:证明(1)n=1时,
左边
=12 (2×1?1)(2×1+1)
=1 3
=右边,等式成立1×(1+1) 2(2×1+1)
(2)假设n=k时等式成立,
即
+12 1?3
++22 3?5
=k2 (2k?1)(2k+1)
.k(k+1) 2(2k+1)
则n=k+1时,
左边=
+k(k+1) 2(2k+1)
=(k+1)2 (2k+1)(2k+3)
(k+k?1 2(2k+1)
)2k+2 2k+3
=
?k+1 2(2k+1)
=2k2+5k+2 2k+3
?k+1 2(2k+1)
=(2k+1)(k+2) 2k+3
.(k+1)(k+2) 2(2k+3)
∴n=k+1时,等式成立
由(1)(2)知,对一切n∈N*,
+12 1?3
++22 3?5
=n2 (2n?1)(2n+1)
.n(n+1) 2(2n+1)