自太难看了将就点
由条件知 2S1=a3-2,2S2=a4-2
2S2-2S1=a4-2-(a3-2)=2(S2-S1)=2a2,a4-a3=2a2,a4/a2-a3/a2=2,即q²-q=2
(q-2)(q+1)=0
解得q=2或q=-1(是正项数列,舍去)
∴q=2
由条件知,b1=a2+a1=1+1=2
2Sn=an+2-2 2Sn-1=an+1-2
2Sn-2Sn-1=an+2-2 -(an+1-2)=an+2-an+1=2an
则有,an+2+an+1=2an+2an+1=2(an+1+an)
即bn+1=2bn,说明数列{bn}是以2为公比的等比数列
则bn=b1*2^(n-1)=2^n
请参考