在面积相等的长方形,正方形,圆中谁的周长最大,谁的周长最小?

2025-04-19 08:38:32
推荐回答(1个)
回答1:

长方形的周长最大。

分析过程如下:

分析:周长相等时,形状越近似于圆,面积越大,反之,面积相等,形状越不接近圆,周长越大;所以长方形,正方形,圆的面积相等,他们周长大小比较的排列顺序为(从大到小):长方形,正方形,圆。

解:当长方形、正方形、圆三个图形的面积相等时,它们周长的长短关系是颠倒的,即长方形>正方形>圆。

点评:考查了图形的面积及周长的比较,是一个经典题型.本题从数量上认证了面积一定,长方形的周长>正方形的周长>圆的周长。

周长最少肯定是圆,因为在周长相等的正多边形中,边数越多面积越大,圆是面积最大的,相当于正无穷边形。反过来就是面积相等,圆周长最小。

最长则不唯一,长方形、平四、梯形都可以在固定面积下高无限缩小趋近于0,而长无限增加,可以趋近于无穷大,因此这三个都趋近周长无穷大,固无法比较。

环绕有限面积的区域边缘的长度积分,叫做周长,也就是图形一周的长度。

多边形的周长的长度也相等于图形所有边的和,圆的周长=πd=2πr (d为直径,r为半径,π),扇形的周长 =2R+nπR÷180˚ (n=圆心角角度) = 2R+kR (k=弧度)。

周长只能用于二维图形(平面、曲面)上,三维图形(立体) 如柱体、锥体、球体等都不能以周界表示其边界大小,而是要用总表面面积。