(2014?东阳市二模)已知抛物线C:x2=2py(p>0)上纵坐标为p的点到焦点F的距离为3.(Ⅰ)求抛物线方程

2025-04-07 07:55:45
推荐回答(1个)
回答1:

(Ⅰ)∵抛物线C:x2=2py(p>0)上纵坐标为p的点到焦点F的距离为3,
∴p+

p
2
=3,解得p=2,
∴抛物线方程为x2=4y.
(Ⅱ)设A(x1,y1),B(x2,y2),C(x3,y3),
设直线AB:y=k1x-1,直线AC:y=k2x+1,与x2=4y联立方程组,得:
x2-4k1x+4=0,x2-4k2x-4=0,
由△>0,得k1>1,
x1+x2=4k1
x1x2=4
x1+x3=4k2
x1x3=?4

∴x2=-x3,结合x1+x3=4k2,得x1-x2=4k2
又∵x1+x2=4k1,x1x2=4,
(x1+x2)2=(x1?x2)2+4x1x2,得k12k22+1
∴|AB|=4
k14?1
,AC=4(1+k22)=4