(Ⅰ)∵抛物线C:x2=2py(p>0)上纵坐标为p的点到焦点F的距离为3,
∴p+
=3,解得p=2,p 2
∴抛物线方程为x2=4y.
(Ⅱ)设A(x1,y1),B(x2,y2),C(x3,y3),
设直线AB:y=k1x-1,直线AC:y=k2x+1,与x2=4y联立方程组,得:
x2-4k1x+4=0,x2-4k2x-4=0,
由△>0,得k1>1,
且
,
x1+x2=4k1
x1x2=4
,
x1+x3=4k2
x1x3=?4
∴x2=-x3,结合x1+x3=4k2,得x1-x2=4k2,
又∵x1+x2=4k1,x1x2=4,
由(x1+x2)2=(x1?x2)2+4x1x2,得k12=k22+1,
∴|AB|=4
,AC=4(1+k22)=4
k14?1