自然数用以计量事物的件数或表示事物次序的数。即用数码0,1,2,3,4,……所表示的数。表示物体个数的数叫自然数,自然数由0开始,一个接一个,组成一个无穷的集体。自然数有有序性,无限性。分为偶数和奇数,合数和质数等。
1、对自然数可以定义加法和乘法。其中,加法运算“+”定义为:
a + 0 = a;
a + S(x) = S(a +x), 其中,S(x)表示x的后继者。
如果我们将S(0)定义为符号“1”,那么b + 1 = b + S(0) = S( b + 0 ) = S(b),即,“+1”运算可求得任意自然数的后继者。
同理,乘法运算“×”定义为:
a × 0 = 0;
a × S(b) = a × b + a
自然数的减法和除法可以由类似加法和乘法的逆的方式定义。
2、有序性。自然数的有序性是指,自然数可以从0开始,不重复也不遗漏地排成一个数列:0,1,2,3,…这个数列叫自然数列。一个集合的元素如果能与自然数列或者自然数列的一部分建立一一对应,我们就说这个集合是可数的,否则就说它是不可数的。
3、无限性。自然数集是一个无穷集合,自然数列可以无止境地写下去。
对于无限集合来说“,元素个数”的概念已经不适用,用数个数的方法比较集合元素的多少只适用于有限集合。为了比较两个无限集合的元素的多少,集合论的创立者德国数学家康托尔引入了一一对应的方法。
这一方法对于有限集合显然是适用的,21世纪把它推广到无限集合,即如果两个无限集合的元素之间能建立一个一一对应,我们就认为这两个集合的元素是同样多的。
对于无限集合,我们不再说它们的元素个数相同,而说这两个集合的基数相同,或者说,这两个集合等势。与有限集对比,无限集有一些特殊的性质,其一是它可以与自己的真子集建立一一对应,例如:
0 1 2 3 4 …
1 3 5 7 9 …
这就是说,这两个集合有同样多的元素,或者说,它们是等势的。大数学家希尔伯特曾用一个有趣的例子来说明自然数的无限性:如果一个旅馆只有有限个房间,当它的房间都住满了时,再来一个旅客,经理就无法让他入住了。
但如果这个旅馆有无数个房间,也都住满了,经理却仍可以安排这位旅客:他把1号房间的旅客换到2号房间,把2号房间的旅客换到3号房间,……如此继续下去,就把1号房间腾出来了。
4、传递性:设 n1,n2,n3 都是自然数,若 n1>n2,n2>n3,那么 n1>n3。
5、三岐性:对于任意两个自然数n1,n2,有且只有下列三种关系之一:n1>n2,n1=n2或n1 6、最小数原理:自然数集合的任一非空子集中必有最小的数。具备性质3、4的数集称为线性序集。容易看出,有理数集、实数集都是线性序集。 但是这两个数集都不具备性质5,例如所有形如nm(m>n,m,n 都是自然数)的数组成的集合是有理数集的非空子集,这个集合就没有最小数;开区间(0,1)是实数集合的非空子集,它也没有最小数。 具备性质5的集合称为良序集,自然数集合就是一种良序集。容易看出,加入0之后的自然数集仍然具备上述性质3、4、5,就是说,仍然是线性序集和良序集。 扩展资料: 1、自然数列在“数列”,有着最广泛的运用,因为所有的数列中,各项的序号都组成自然数列。 任何数列的通项公式都可以看作:数列各项的数与它的序号之间固定的数量关系。 2、求n条射线可以组成多少个角时,应用了自然数列的前n项和公式 第1条射线和其它射线组成(n-1)个角,第2条射线跟余下的其它射线组成(n-2)个角,依此类推得到式子 1+2+3+4+……+n-1=n(n-1)/2 3、求直线上有n个点,组成多少条线段时,也应用了自然数列的前n项和公式 第1个点和其它点组成(n-1)条线段,第2个点跟余下的其它点组成(n-2)条线段,依此类推同样可以得到式子 1+2+3+4+……+n-1=n(n-1)/2 任何一自然数,可代入下公式,等式始终成立: 参考资料来源:百度百科-自然数
自然数从0开始还是从1开始饱受争议。从数论上来讲,自然数从1开始,在集合论中,自然数从0开始。我国中小学教材中自然数是从0开始,《新华字典》中自然数是从1开始。可以指正整数或非负整数,在数论通常用前者,而集合论和计算机科学则多数使用后者。
性质和特点:
1、有序性。自然数的有序性是指,自然数可以从0开始,不重复也不遗漏地排成一个数列:0,1,2,3,…这个数列叫自然数列。
2、无限性。自然数集是一个无穷集合,自然数列可以无止境地写下去。
3、传递性:设 n1,n2,n3 都是自然数,若 n1>n2,n2>n3,那么 n1>n3。
4、三岐性:对于任意两个自然数n1,n2,有且只有下列三种关系之一:n1>n2,n1=n2或n1