根据单调性解答。f'(x)=1/x-1/e00,f(x)是增函数;x>e,f'(x)<0,减函数;x=1/e,f'(x)=0,有极大值。1-1/e+k,>0,x-->0,f(x)--》-∞;x-->+∞,f(x)=x(lnx/x-1/e)+k-->x(1/x-1/e)=1-x/e+k,x很大时,f(x)-->-∞,因此,有2个零点。
只有2个零点,答案如图所示