如图,
Rt△ABC的面积为20cm²,在AB的同侧,分别以AB,BC,AC为直径做三个半圆,求阴影部分的面积。
解:S阴影=1/2·π(AC/2)²+1/2·π(BC/2)²+S△ABC-1/2·π(AB/2)²
=πAC²/8+πBC²/8+S△ABC-πAB²/8
=π/8(AC²+BC²-AB²)+S△ABC
∵AC²+BC²=AB²
∴S阴影=S△ABC=20cm²
答:阴影部分的面积为20cm²。
S(阴影)=1/2*π*(1/2AC)^2+1/2*π(1/2BC)^2+S(三角形ABC)-1/2*π*(1/2AB)^2
=1/8*π*(AC^2+BC^2-AB^2)+S(三角形ABC)
而AC^2+BC^2=AB^2,
所以S(阴影)=S(三角形ABC)=20
告诉你个简单的方法:一看这个题,应该会立马想到勾股定理,而且三个边都是未知的;在看所要求的面积,肯定是存在减法;每个圆的半径是对应边的一半,那么其中三个半圆的面积(未知)的表达式中必有相似的系数(π/8),且看图形是两个小圆面积的和减一个大圆面积,圆面积中必有平方项,再根据勾股定理,即可得零,又因为多减掉了一个三角形,再加上一个即可。综合上述,阴影面积是20平方厘米。你看懂了吗?根本不用动笔计算。
解:设AC=2x,BC=2y,则以AC为直径的半圆面积为 πx^2/2,
以BC为直径的半圆面积为 πy^2/2, AB=2(根号(x^2+y^2)),
以AB为直径的半圆面积为 π(x^2+y^2)/2
故阴影部分的面积S=πx^2/2 + πy^2/2 - {π(x^2+y^2)/2-20} = 20
即阴影部分面积为 S=20 平方厘米