∵aCOSB-bcosA=1/2c∴sinAcosB-sinBcosA=1/2sinC(用正弦定理)又A+B+C=π,则C=π-(A+B)∴sinAcosB-sinBcosA=1/2sin(A+B)∴2sinAcosB-2sinBcosA=sinAcosB+sinBcosA即sinAcosB=3sinBcosA∴tanA=3tanB