求微分方程y"(x+y✀^2)=y‘满足初始条件y(1)=y✀(1)=1的特解

^表示次幂
2025-04-06 04:35:40
推荐回答(2个)
回答1:

p=y',p'(x+p²)=p
(dp/dx)(x+p²)=p
1.p≠0时 (dx/dp)=x/p+p
令z=x/p,x=zp,x'=z+z'p
z+z'p=z+p
z'p=p
x/p=p+C,因为x=1时,p=1所以C=0
x/y'=y'
y'=±√x,y=±(2/3)x^(3/2)+C
代入初值y=(2/3)x^(3/2)+1/3或y=-(2/3)x^(3/2)+5/3
2.当p=0时,无法满足y'(1)=1的条件
故结果为:
y=(2/3)x^(3/2)+1/3或y=-(2/3)x^(3/2)+5/3

回答2:

全解上面答案少一个负的值