如何利用三元均值不等式求函数最值?

2025-04-10 01:29:44
推荐回答(1个)
回答1:

定理1:如果a,b,c∈R,那么 a³+b³+c³ ≥3abc,当且仅当a=b=c时,等号成立。
定理2:如果a,b,c∈R+,那么(a+b+c)/3≥³√(abc),当且仅当a=b=c时,等号成立。

结论:设x,y,z都是正数,则有
(1)若xyz=S(定值),则当x=y=z时,x+y+z有最小值3³√S。
(2)若x+y+z=P(定值),则当x=y=z时,xyz有最大值P³/27。
记忆:“一正、二定、三相等”