An=Sn-Sn-1=n^2+2n-[(n-1)^2+2(n-1)]=2n+1.当n=1时,Sn=An=3,满足2n+1。所以An=2n+1.
a(1)=s(1)=1+2=3,a(n+1)=s(n+1)-s(n)=(n+1)^2+2(n+1)-n^2-2n=(2n+1)+2=2(n+1)+1,a(n)=2n+1
S(n+1)=(n+1)^2+2(n+1)S(n+1)-Sn=n^2+2n+1+2n+2-n^2-2nS(n+1)-Sn=2n+3An=S(n+1)-Sn=2n+3