已知0<b<π⼀2<a<π,且cos(a-b⼀2)=-1⼀9,sin(a⼀2-b)=2⼀3。求cos(a+b)=?

2025-04-10 00:36:15
推荐回答(1个)
回答1:

∵0<b<π/2,π/2<a<π,∴0<b/2<π/4,π/4<a/2<π/2,
∴-π/4<-b/2<0,-π/2<-b<0,
∴π/2-π/4<a-b/2<π-0,π/4-π/2<a/2-b<π/2-0,
∴π/4<a-b/2<π,-π/4<a/2-b<π/2。

由cos(a-b/2)=-1/9、π/4<a-b/2<π,得:π/2<a-b/2<π,
∴sin(a-b/2)=√{1-[cos(a-b/2)]^2}=√(1-1/81)=4√5/9。
由sin(a/2-b)=2/3、-π/4<a/2-b<π/2,得:0<a/2-b<π/2,
∴cos(a/2-b)=√{1-[cos(a/2-b)]^2}=√(1-4/9)=√5/3。

∴cos[(a+b)/2]
=cos[(a-b/2)-(a/2-b)]
=cos(a-b/2)cos(a/2-b)+sin(a-b/2)sin(a/2-b)
=-(1/9)×(√5/3)+(4√5/9)×(2/3)
=-√5/27+8√5/27
=7√5/27。

∴cos(a+b)=2{ cos[(a+b)/2]}^2-1=2(7√5/27)^2-1=-239/719。