10x^2-10tanA·x-3tanA+4=0有等根
∴△=100(tanA)^2+120tanA-160=0
5(tanA)^2+6tanA-8=0
(tanA+2)(5tanA-4)=0
tanA=-2(A为锐角,不合题意,舍去)
tanA=4/5,
设a=4K,b=5K,则c=√(16K^2+25K^2)=K√41
∴sinA=4√41/41,cosA=5√41/41
10x²-10tanA·x-3tanA+4=0
△=(10tanA)²-4*10*(4-3tanA)
=100tan²A-160+120tanA
100tan²A-160+120tanA=0
5tan²A-8+6tanA=0
5tan²A+6tanA-8=0
(5tanA-4)(tanA+2)=0
tanA=4/5或tanA=-2(舍去,角C=90°)
所以tanA=4/5
sinA=4√41/41
cosA=5√41/41