∵α为锐∴α+π/6∈(π/6,2π/)
∵cos(α+π/6)=5/13,
∴sin(α+π/6)=√(1-25/169)=12/13
cosα=cos[(α+π/6)-π/6]
=cos[(α+π/6)-π/6]
=cos(α+π/6)cosπ/6+sin(α+π/6)sinπ/6
=5/13*√3/2+12/13*1/2
=(5√3+12)/26
展开即可:
cos(α+π/6)=(√3/2)cosα-(1/2)sinα=5/13
sin(α+π/6)=(1/2)cosα+(√3/2)sinα=12/13;
二元一次方程组,就简单了