a1=1,
a2=3,
a3=6,
a4=10,
a5=15,
a6=21......
a2-a1=2,
a3-a2=3,
a4-a3=4,
a5-a4=5,
a(n)-a(n-1)=n
故 a(n) = a(n-1) + n =a(n-2) + n-1 +n =a(n-3) + n-2 +n-1 + n
=a1 + 2 +3 + 4 + ... + n-2 + n-1 + n
=1 + 2 + 3 + 4 + ... + n-2 + n-1 + n
n为偶数时
a(n) =(1+ n) + (2 + n-1) + (3 + n-2 ) +.... = ( n+1)*(n/2)
所以 a100 = (100+1)*(100/2) =101*50=5050
请采纳。
a=(nxn+n)/2