解:绕x轴旋转一周所得的体积=∫<0,2>π(x²/4)dx-∫<1,2>π(x-1)dx
=[(π/12)x³]│<0,2>-[π(x²/2-x)]│<1,2>
=(π/12)(2³-0³)-π(2²/2-2-1²/2+1)
=2π/3-π/2
=π/6;
绕y轴旋转一周所得的体积=∫<0,2>2πx(x/2)dx-∫<1,2>2πx√(x-1)dx
=π∫<0,2>x²dx-2π∫<1,2>[(x-1)^(3/2)+(x-1)^(1/2)]dx
=[π(x³/3)]│<0,2>-2π[(2/5)(x-1)^(5/2)+(2/3)(x-1)^(3/2)]│<1,2>
=(π/3)(2³-0³)-2π[(2/5)(2-1)^(5/2)+(2/3)(2-1)^(3/2)]
=8π/3-32π/15
=8π/15。