将复合函数分解成基本初等函数?

将复合函数分解成基本初等函数?求过程和方式
2025-04-07 08:56:17
推荐回答(2个)
回答1:

分解的原则就是按照运算顺序一层一层的去掉,比如y=sin e^√x,最后一步运算时sin,所以先去sin,就设h(x)=sin(x),去掉sin后的最后一步运算是求指数e^√x,所以设g(x)=e^x,去掉e后的最后一步运算是开方√x,所以设f(x)=√x,至此可以把h,g,f复合起来就是原函数

对于y=sin e^√x,令h(x)=sin(x),g(x)=e^x,f(x)=√x

复合函数h{g[f(x)]}=h[g(√x)]=h(e^√x)=sin e^√x

对于y=√lntan x^2,令P(x)=√x,h(x)=ln(x),g(x)=tan(x),f(x)=x^2

复合函数P{h{g[f(x)]}}=P{h[g(x^2)]}=P{h[tan(x^2)]}=P[lntan(x^2)]=√lntan(x^2)

幂函数取正值

当α>0时,幂函数y=xα有下列性质:

a、图像都经过点(1,1)(0,0);

b、函数的图像在区间[0,+∞)上是增函数;

c、在第一象限内,α>1时,导数值逐渐增大;α=1时,导数为常数;0<α<1时,导数值逐渐减小。

回答2:

分解的原则就是按照运算顺序一层一层的去掉,比如y=sin e^√x,他的最后一步运算时sin,所以先去sin,就设h(x)=sin(x),去掉sin后的最后一步运算是求指数e^√x,所以设g(x)=e^x,接着,去掉e后的最后一步运算是开方√x,所以设f(x)=√x,至此可以把h,g,f复合起来就是原函数了.第二题同理.
对于y=sin e^√x,令h(x)=sin(x),g(x)=e^x,f(x)=√x,那么
它们的复合函数h{g[f(x)]}=h[g(√x)]=h(e^√x)=sin e^√x
对于y=√lntan x^2,令P(x)=√x,h(x)=ln(x),g(x)=tan(x),f(x)=x^2,那么
它们的复合函数
P{h{g[f(x)]}}=P{h[g(x^2)]}=P{h[tan(x^2)]}=P[lntan(x^2)]=√lntan(x^2)