对偶理论是线性规划理论的发展和深化,也是线性规划的一个特性。它使线性规划理论更加丰富,应用领域更加广泛。对于任何求极大值的线性规划问题,都有一个与之对应的求极小值问题,其有关约束条件的系数矩阵具有相同的数据,但形式上互为转置,且目标函数与约束方程右端常数项互换,目标函数值相等。这就是线性规划的对偶问题。
可用一个简单例子来说明,例如,四边形的周长L一定,什么样形状的四边形面积最大?答案是正方形面积最大。其对偶问题为,四边形面积一定,什么样的四边形周长最短?答案仍然是四边形。可见前一问题的约束条件,即为后一问题的目标函数,反之亦然。
线性规划问题中,均假定各系数ai,j,bi,cj是确定的常数,实际上这些系数往往不可能很精确,而且随着客观条件变化而改变。例如地下水资源管理中,当水位、水量或水质等约束条件改变时,bi也随之改变;当市场情况或供求关系发生变化时,cj也会改变;而开采工艺或水文地质条件的改变,同样也可引起ai,j的改变。因此,规划者需要知道,某些系数改变后,现行的最优解是否改变?或者说,这些系数在多大范围内变化,其规划问题的最优解不变?以及当最优解发生变化时,如何用最简便的方法找出新的最优解?这些就是灵敏度分析所要研究和回答的问题。
对偶原理是进行灵敏度分析的理论依据。灵敏度分析的内容,应包括系数cj、bi、ai,j变化及新增加变量和新增加约束条件对最优解的影响。但对地下水资源管理而言,主要分析cj和bi变化。
由于线性规划原问题与对偶问题之间互为对偶,所以,求极大值原问题的最优状况,等价于对偶问题的可行状况;而原问题的可行状况,就是对偶问题最优状况的负值。
从对偶特性可知,对cj和bi进行灵敏度分析的两条重要依据:①只要满足原问题的最优状况或对偶问题的可行状况,其最优解不变。以此可分析cj变化对最优解的影响。②只要原问题保持可行状况或对偶问题最优状况,其最优解不变,以此可分析bi变化对最优解的影响[105~106]。