(1+18/51)+(3+18/51x2)+(5+18/51x3)+......+(97+18/51x49)+(99+18/51x50)
=1+3+5+.............+99+18/51*(1+2+3+............+50)
=(1+99)*50/2+18/51*(1+50)*50/2
=100*25+18*25
=2500+450
=2950
解:
(1+18/51)+(3+18/51x2)+(5+18/51x3)+......+(97+18/51x49)+(99+18/51x50)
=(1+3+5+……+97+99)+(18/51+18/51x2+18/51x3+......+18/51x49+18/51x50)
=(1+99)×50÷2+(18/51)(1+1/2+1/3+……+1/49+1/50)
=2500+(6/17)(ln50+C)(说明:C为欧拉常数)
≈2500+(6/17)(3.91202301+0.57721566)
≈2500+1.58443718
=2501.58443718