先通分:
=lim {1/x² - cosx/[x(sinx)]}
=lim(sinx - xcosx)/(x²sinx)
显然这是一个 0/0 型的极限,可以使用罗必塔法则:
=lim (cosx - cosx + x*sinx)/(2x*sinx + x² *cox)
=lim (x * sinx)/(2x * sinx + x² * cosx)
=lim sinx/(2sinx + x * cosx)
这还是一个 0/0 型的极限,继续使用罗必塔法则:
=lim cosx/(2cosx + cosx - x * sinx)
=lim cosx/(3cosx - x * sinx)
=lim 1/(3*1 - 0 * 0)
=1/3