令√(x+1)=u,则:x+1=u^2,∴dx=2udu。∴∫{[√(x+1)-1]/[√(x+1)+1]}dx=2∫[(u-1)/(u+1)]udu=2∫[(u+1 -2)/(u+1)]udu= 2∫udu-4∫[u/(u+1)]du= u^2-4∫[(u+1-1)/(u+1)]du=x+1-4∫du+4∫[1/(u+1)]du=x+1-4u+4ln|u+1|+C=x-4√(x+1)+4|√(x+1)+1|+C。
把那式子照下来呢,看着迷糊