基于BP 神经网络的环境影响评价方法

2025-04-10 19:56:49
推荐回答(1个)
回答1:

基于BP神经网络的环境影响评价模型的建立过程如下:

(1)样本选择

根据表3.7、表3.8、表3.9提取建模所需的样本数据(表3.11)

表3.11 8组基坑环境影响工程数据

(2)BP神经网络结构设计

对于BP网络,对于任何在闭区间内的一个连续函数都可以用单隐层的BP网络逼近,因而一个三层BP网络就可以完成任意的n维到m维的映射。根据网络结构简单化的原则,确定采用三层BP网络结构,即输入层为支护刚度、岩土性质、降水方式、水文地质边界、基坑侧壁状态、边载分布、后续使用年限、基础型式和差异沉降δ九个参数,输出层为环境等影响级,隐层层数为1层。隐层的神经元数目选择是一个十分复杂的问题,往往需要根据设计者的经验和多次实验来确定,因而不存在一个理想的解析式来表示。隐单元的数目与问题的要求,与输入、输出单元的数目有直接的关系。隐单元数目太多会导致学习时间过长,误差不一定最佳,也会导致容错性差、不能识别以前没有看到的样本,因此一定存在一个最佳的隐单元数。研究通过一次编程比较了隐层神经元个数分别为5、10、15、20、25、30、40时训练速度及检验精度。

(3)网络训练及检验

BP网络采用梯度下降法来降低网络的训练误差,考虑到基坑降水地面沉降范围内沉降量变化幅度较小的特点,训练时以训练目标取0.001为控制条件,考虑到网络的结构比较复杂,神经元个数比较多,需要适当增加训练次数和学习速率,因此初始训练次数设为10000次,学习速率取0.1,中间层的神经元传递函数采用S型正切函数tansig,传输函数采用logsig,训练函数采用trainlm,分别抽取表3.11中的7组数据作为训练样本,剩余1组作为检验样本。使用MATLAB6.0编程建立基于BP神经网络的基坑降水环境影响评价模型,考虑到样本量较小,预测结果不稳定,取预测20次评价结果的平均值作为最终评价结果。经试算最终确定当隐层神经单元为10,结果如下:

表3.12 基坑降水环境影响评价模型检验结果

结果表明基于BP神经网络的基坑降水环境影响评价结果大部分与实际监测结果相符,部分结果偏于危险。