已知函数y=f(x)=cx+d⼀ax+b (其中a不等于0,ad-bc≠0),求f(x)单调性

2025-04-17 17:27:36
推荐回答(1个)
回答1:

y=(cx+d)/(ax+b)
=(cx+bc/a+d-bc/a)/[a(x+b/a)]
=c/a+(ad-bc/a)/a^2 *1/(x+b/a)
=c/a+k/(x+b/a), 这里 k=(ad-bc)/a^2
定义域为x>-b/a, 及x<-b/a
当k>0时(即ad-bc>0),y在两个定义域区间x>-b/a, 及x<-b/a都是单调减
当k<0时(即ad-bc<0),y在两个定义域区间x>-b/a, 及x<-b/a都是单调增