y=(cx+d)/(ax+b)=(cx+bc/a+d-bc/a)/[a(x+b/a)]=c/a+(ad-bc/a)/a^2 *1/(x+b/a)=c/a+k/(x+b/a), 这里 k=(ad-bc)/a^2定义域为x>-b/a, 及x<-b/a当k>0时(即ad-bc>0),y在两个定义域区间x>-b/a, 及x<-b/a都是单调减当k<0时(即ad-bc<0),y在两个定义域区间x>-b/a, 及x<-b/a都是单调增