什么叫韦恩图啊?最好有图解

2025-04-16 18:41:46
推荐回答(4个)
回答1:

文氏图(英语:Venn diagram),或译Venn图、温氏图、维恩图、范氏图,是在所谓的集合论(或者类的理论)数学分支中,在不太严格的意义下用以表示集合(或类)的一种草图。它们用于展示在不同的事物群组(集合)之间的数学或逻辑联系,尤其适合用来表示集合(或)类之间的“大致关系”。

扩展资料

类似的图

欧拉图可能在外观上同文氏图是一致的。它们之间的区别只在于它们的应用领域中,就是说在被分割的全集的类型中。欧拉图展示对象的特定集合,文氏图的概念更一般的适用于可能的联系。文氏图和欧拉图没有合并的原因可能是,欧拉的版本是早在100多年前就出现了的,欧拉已经有了足够多的成就了,而Venn只留下了这么一个图。

参考资料来源:百度百科—韦恩图

回答2:

韦恩图,也叫文氏图,用于显示元素集合重叠区域的图示。维恩图的历史:1880年,维恩(Venn)在《论命题和推理的图表化和机械化表现》一文中首次采用固定位置的交叉环形式用封闭曲线(内部区域)表示集合及其关系的图形。(Venn Diagram,也称韦恩图或维恩图)。

示例:

1.比如橙色的圆圈(集合 A)可以表示两足的所有活物。蓝色的圆圈(集合 B)可以表示会飞的所有活物。橙色和蓝色的圆圈交叠的区域(叫做交集)包含会飞且两足的所有活物 - 比如鹦鹉。(把每个单独的活物类型想象为在这个图中的某个点)。

2.人和企鹅可以在橙色圆圈中不与蓝色圆圈交叠的部分中。蚊子有六足并且会飞,所以蚊子的点可以在蓝色圆圈中不与橙色圆圈交叠的部分中。不是两足并且不会飞的东西(比如鲸和响尾蛇)可以表示为在这两个圆圈之外的点。在技术上,上面的文氏图可以解释为 "集合 A 和集合 B 之间的联系,它们可以有一些(但不是全部)元素是公共的"。

3.集合 A 和 B 的组合区域叫做集合 A 和 B 的并集。在这个个例中并集包含要么两足、要么会飞、要么两足并且会飞的所有东西。圆圈交叠暗示着两个集合的交集非空 - 就是说在事实上有活物同时在橙色和蓝色圆圈中。

4.有时在文氏图在外面绘制一个方框(叫做全集)来展示所有可能事物的空间。如上提及到的,鲸可以表示为不在并集中但在(活物或所有事物,依赖于你如何选择对特定图的全集的定义)全集中一个点。

注︰也可用于有a.b.c.3个单位的三元容斥。

回答3:

用封闭曲线(内部区域)表示集合及其关系的图形。(Venn 
Diagram,也称韦恩图) 

回答4:

韦恩图
定义:用一条封闭曲线直观地表示集合及其关系地图形称为韦恩图(也叫文氏图)
例如集合中"交集"的韦恩图:
https://gss0.baidu.com/7LsWdDW5_xN3otqbppnN2DJv/eriol1987/pic/item/c061c3ce4d0fc30393457eeb.jpg
如果你上高一的话,第一章就会讲集合,那时就会用到"韦恩图".