什么是洛伦兹变换?谢谢!

2025-04-06 04:33:05
推荐回答(2个)
回答1:

现在根据这两个事实,推导坐标的变换式
设想有两个惯性坐标系分别叫S系、S'系,S'系的原点O‘相对S系的原点O以速率v沿x轴正方向运动。任意一事件在S系、S'系中的时空坐标分别为(x,y,z,t)、(x',y',z',t')。注意:t、t'是时刻。两惯性系重合时,分别开始计时
若x=0,则x'+vt'=0。这是变换须满足的一个必要条件(坐标值加速度乘时刻等于零,这是推导洛仑兹变换的关键),故猜测任意一事件的坐标从S'系到S系的变换为
x=γ(x'+vt') (1)
式中引入了常数γ,命名为洛伦兹因子
(由于这个变换是猜测的,显然需要对其推导出的结论进行实验以验证其正确性)
在此猜测上,引入相对性原理,即不同惯性系的物理方程的形式应相同。故上述事件坐标从S系到S'系的变换为
x'=γ(x-vt) (2)
y与y'、z与z'的变换可以直接得出,即
y'=y (3)
z'=z (4)
把(2)代入(1),解t'得
t'=γt+(1-γ^2)x/γv (5)
在上面推导的基础上,引入光速不变原理,以寻求γ的取值
设想由重合的原点O(O')发出一束沿x轴正方向的光,设该光束的波前坐标为(X,Y,Z,T)、(X',Y',Z',T')。根据光速不变,有
X=cT (6)
X’=cT' (7)
注意:相对论的光速不变是坐标值X等于光速c乘时刻T,坐标值X’等于光速c乘时刻T’
(1)(2)相乘得
xx'=γ^2( xx'-x'vt+xvt'-v^2*tt') (8)
以波前这一事件作为对象,则(8)写成
XX'=γ^2(XX'-X'VT+XVT'-V^2*TT') (9)
(6)(7)代入(9),化简得洛伦兹因子
γ=[1-(v/c) ^2]^(-1/2) (10)
(10)代入(5),化简得
t'=γ(t-vx/c^2) (11)
把(2)、(3)、(4)、(11)放在一起,即S系到S'系的洛伦兹变换
x'=γ(x-vt),
y'=y,
z'=z,
t'=γ(t-vx/c^2) (12)
根据相对性原理,由(12)得S'系到S系的洛伦兹变换
x=γ(x'+vt'),
y=y',
z=z',
t=γ(t'+vx'/c^2) (13)

回答2:

洛伦兹变换,狭义相对论中关于不同惯性系之间物理事件时空坐标变换的基本关系式。