数域有两种运算:加法和乘法(减法和除法可以看作逆运算),而0和1分别是加法和乘法的单位元,其重要性可见一斑。
设P是由一些复数组成的集合,其中包括0与1,如果P中任意两个数的和、差、积、商(除数不为0)仍是P中的数,则称P为一个数域。
常见数域: 复数域C;实数域R;有理数域Q。
说明:
1)若数集P中任意两个数作某一运算的结果仍在P中,则说数集P对这个运算是封闭的。
2)数域的等价定义:如果一个包含0,1在内的数集P对于加法,减法,乘法与除法(除数不为0)是封闭的,则称数集P为一个数域。