标准形矩阵:每个非零行的第一个非零元素为1,每个非零行的第一个非零元素所在列的其他元素全为零,则是最简形矩阵。如果一个矩阵的左上角为单位矩阵,其他位置的元素都为零。
在矩阵中可画出一条阶梯线,线的下方全为0,每个台阶只有一行,台阶数即是非零行的行数,阶梯线的竖线(每段竖线的长度为一行)后面的第一个元素为非零元,也就是非零行的第一个非零元,则称该矩阵为行阶梯矩阵。
扩展资料:
两个矩阵的乘法仅当第一个矩阵A的列数和另一个矩阵B的行数相等时才能定义。如A是m×n矩阵和B是n×p矩阵,它们的乘积C是一个m×p矩阵 ,它的一个元素:
并将此乘积记为:
例如:
矩阵的乘法满足以下运算律:
结合律:
左分配律:
右分配律:
矩阵乘法不满足交换律。
在线性代数中,三角矩阵是方形矩阵的一种,因其非零系数的排列呈三角形状而得名。三角矩阵分上三角矩阵和下三角矩阵两种。若 ,则
的矩阵称为上三角矩阵 ,若
,则
的矩阵称为下三角矩阵 。三角矩阵可以看做是一般方阵的一种简化情形。
矩阵在物理学中的另一类泛应用是描述线性耦合调和系统。这类系统的运动方程可以用矩阵的形式来表示,即用一个质量矩阵乘以一个广义速度来给出运动项,用力矩阵乘以位移向量来刻画相互作用。
参考资料来源:百度百科——矩阵
如果矩阵B可以由A经过一系列初等变换得到,那么矩阵A与B是等价的。经过多次变换以后,得到一种最简单的矩阵,就是这个矩阵的左上角是一个单位矩阵,其余元素都是0,那么这个矩阵就是原来矩阵的等价标准型。
在矩阵中可画出一条阶梯线,线的下方全为0,每个台阶只有一行,台阶数即是非零行的行数,阶梯线的竖线(每段竖线的长度为一行)后面的第一个元素为非零元,也就是非零行的第一个非零元,则称该矩阵为行阶梯矩阵。
简正模式:
矩阵在物理学中的另一类泛应用是描述线性耦合调和系统。这类系统的运动方程可以用矩阵的形式来表示,即用一个质量矩阵乘以一个广义速度来给出运动项,用力矩阵乘以位移向量来刻画相互作用。求系统的解的最优方法是将矩阵的特征向量求出(通过对角化等方式),称为系统的简正模式。
以上内容参考:百度百科-矩阵
矩阵标准型的理论来自于矩阵的相似性,矩阵在初等变化下有很多数值不一样的表象,但其本质特征,如秩,特征值,特征多项式等都是相同的,这些相似不变量就是这个矩阵的本质特征,而如何用最简单的形式表征这些矩阵就是标准型的由来了
矩阵的标准形一般有3种:
1.梯矩阵
2.行简化梯矩阵(或称为行最简形)
3.等价标准形
矩阵的标准型交换,一起进来学习吧