方程(y+x)dy_ydx=0的通解如何求解?

2025-04-08 05:53:38
推荐回答(1个)
回答1:

解:∵(y+x)dy-ydx=0
==>ydy+xdy-ydx=0
==>dy/y-(ydx-xdy)/y^2=0 (等式两端同除y^2)
==>dy/y-d(x/y)=0
==>∫dy/y-∫d(x/y)=0
==>ln│y│-x/y=ln│C│ (C是积分常数)
==>ye^(-x/y)=C
==>y=Ce^(x/y)
∴原方程的通解是y=Ce^(x/y)。