导数:如果是在某点处的导数的话,那导数有几何意思,那就是在该点处的切线的斜率。如果是函数和导数,就是因变量y对自变量x的变化率。结合后面的微分知识知道,导数其实是微商,即因变量的增量与自变量的增量的比值的极限,写成公式就是f'(x)=dy/dx, 微分:如果函数在某点处的增量可以表示成 △y=A△x+o(△x) (o(△x)是△x的高阶无穷小) 且A是一个与△x无关的常数的话,那么这个A△x就叫做函数在这点处的微分,用dy表示,即dy=A△x △y=A△x+o(△x),两边同除△x有 △y/△x=A+o(△x)/△x,再取△x趋于0的极限有 lim△y/△x=lim[A+o(△x)/△x]=limA+lim[o(△x)/△x]=A+0 f'(x)=lim△y/△x=A 所以这里就揭示出了,导数与微分之间的关系了, 某点处的微分:dy=f'(x)△x 通常我们又把△x叫自变量的微分,用dx表示 所以就有 dy=f'(x)dx.证明出了微分与导数的关系 正因为f'(x)=dy/dx,所以导数也叫做微商(两个微分的商)
对一个函数积分和对它微分,这两个运算互为逆运算。 求原函数的过程是不定积分运算;求导的过程是微分运算。 一个函数的微分与它的导数也略有区别,微分是函数的线性增量(变化),而导数是函数的变化率(也就是函数值变化/自变量变化)。
导数描述函数变化率,微分是函数改变量的线性主要部分,导数是函数微分与自变量微分的商