(Ⅰ) 由已知得:S3=9,a52=a3?a8,
∴
,解得:a1=2,d=1.
3a1+
d=93×2 2 (a1+4d)2=(a1+2d)?(a1+7d)
∴an=n+1,
Sn=
=n(2+n+1) 2
+n2 2
n;3 2
(Ⅱ)由题知cn=2n(
?λ).2 n+1
若使{cn}为单调递减数列,
则cn+1-cn=2n+1(
?λ)-2n(2 n+2
?λ)=2n(2 n+1
?4 n+2
?λ)<0对一切n∈N*恒成立,2 n+1
即:
?4 n+2
?λ<0?λ>(2 n+1
?4 n+2
)max,2 n+1
又
?4 n+2
=2 n+1
=2n (n+2)(n+1)
=2n
n2+3n+2
,2 n+
+32 n
当n=1或2时,(
?4 n+2
)max=2 n+1
.1 3
∴λ>
.1 3