(1)原式需分母不为0,事实上,2x²-x+1=2(x-1/4)²+7/8>0,∴x∈R,即函数定义域为整个实数域R。(2)y=(x²+x+2)/(2x²-ⅹ+1),即(2y-1)x²-(y+1)x+y-2=0.(2y-1=0即y=1/2在定义域内)上式判别式△≥0,故(y+1)²-4(2y-1)(y-2)≥0∴7y²-22y+7≤0解得,(11-6√2)/7≤y≤(11+6√2)/7.所以,函数值域为[(11-6√2)/7,(11+6√2)/7]。