1=9a²+b²→2=(1²+1²)(9a²+b²) ≥(3a+b)²→3a+b≤√2.此时取等条件为:b=3a.其次,由均值不等式得ab=(1/3)·3a·b ≤(1/3)·[(3a+b)/2]² =(3a+b)²/12.取等条件也是为:b=3a.∴ab/(3a+b)=[(3a+b)²/12]/(3a+b)=(3a+b)/12≤√2/12.∴b=3a且9a²+b²=1,即a=√2/6, b=√2/2时,所求最大值为:√2/12。