柯西不等式基本题型分别是:
1、二维形式:
(a^2+b^2)(c^2 + d^2)≥(ac+bd)^2
等号成立条件:ad=bc
2、三角形式:
√(a^2+b^2)+√(c^2+d^2)≥√[(a-c)^2+(b-d)^2]
等号成立条件:ad=bc
3、向量形式:
|α||β|≥|α·β|,α=(a1,a2,…,an),β=(b1,b2,…,bn)(n∈N,n≥2)
等号成立条件:β为零向量,或α=λβ(λ∈R)。
4、一般形式:
(∑ai^2)(∑bi^2) ≥ (∑ai·bi)^2
等号成立条件:a1:b1=a2:b2=…=an:bn,或ai、bi均为零。
简介:
柯西(Cauchy,Augustin Louis 1789-1857),出生于巴黎,他的父亲路易·弗朗索瓦·柯西是法国波旁王朝的官员,在法国动荡的政治漩涡中一直担任公职。由于家庭的原因,柯西本人属于拥护波旁王朝的正统派,是一位虔诚的天主教徒。
在数学领域,有很高的建树和造诣。很多数学的定理和公式也都以他的名字来称呼,如柯西不等式、柯西积分公式。
虽然柯西主要研究分析,但在数学中各领域都有贡献。关于用到数学的其他学科,他在天文和光学方面的成果是次要的,可是他却是数理弹性理论的奠基人之一。
柯西不等式基本题型分别是:
1、二维形式:
(a^2+b^2)(c^2 + d^2)≥(ac+bd)^2
等号成立条件:ad=bc
2、三角形式:
√(a^2+b^2)+√(c^2+d^2)≥√[(a-c)^2+(b-d)^2]
等号成立条件:ad=bc
3、向量形式:
|α||β|≥|α·β|,α=(a1,a2,…,an),β=(b1,b2,…,bn)(n∈N,n≥2)
等号成立条件:β为零向量,或α=λβ(λ∈R)。
4、一般形式:
(∑ai^2)(∑bi^2) ≥ (∑ai·bi)^2
等号成立条件:a1:b1=a2:b2=…=an:bn,或ai、bi均为零。
柯西(Cauchy Augustin-Louis,1789-1857),法国数学家,1789年8月21日生于巴黎。他在纯数学和应用数学的功底是相当深厚的,很多数学的定理、公式都以他的名字来称呼,如柯西不等式、柯西积分公式。
在数学写作上,他被认为在数量上仅次于欧拉的人,他一生一共著作了789篇论文和几本书,以《分析教程》(1821年)和《关于定积分理论的报告》(1827年)最为著名。
不过他并不是所有的创作都质量很高,因此他还曾被人批评“高产而轻率”,这点倒是与数学王子(高斯)相反。据说,法国科学院《会刊》创刊的时候,由于柯西的作品实在太多,以致于科学院要负担很大的印刷费用,超出科学院的预算,因此,科学院后来规定论文最长的只能够到四页。柯西较长的论文因而只得投稿到其它地方。